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Use of Hearing Aids Embedded with Inertial Sensors and Artificial
Intelligence to Identify Patients at Risk for Falling
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Objective: To compare fall risk scores of hearing aids embedded
with inertial measurement units (IMU-HAs) and powered by artifi-
cial intelligence (AI) algorithms with scores by trained observers.
Study Design: Prospective, double-blinded, observational study of
fall risk scores between trained observers and those of IMU-HAs.
Setting: Tertiary referral center.
Patients: Two hundred fifty participants aged 55–100 years who
were at risk for falls.
Interventions: Fall risk was categorized using the Stopping Elderly
Accidents, Deaths, and Injuries (STEADI) test battery consisting of
the 4-Stage Balance, TimedUp andGo (TUG), and 30-Second Chair
Stand tests. Performance was scored using bilateral IMU-HAs and
compared to scores by clinicians blinded to the hearing aid measures.
Main Outcome Measures: Fall risk categorizations based on
4-Stage Balance, Timed Up and Go (TUG), and 30-Second Chair
Stand tests obtained from IMU-HAs and clinicians.
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Results: Interrater reliability was excellent across all clinicians.
The 4-Stage Balance and TUG showed no statistically significant
differences between clinician and HAs. However, the IMU-HAs
failed to record a response in 12% of TUG trials. For the 30-
Second Chair Stand test, there was a significant difference of
nearly one stand count, which would have altered fall risk classifi-
cation in 21% of participants.
Conclusions: These results suggest that fall risk as determined by
the STEADI tests was in most instances similar for IMU-HAs and
trained observers; however, differences were observed in certain
situations, suggesting improvements are needed in the algorithm
to maximize accurate fall risk categorization.
KeyWords:Artificial intelligence—Balance—Fall risk—Hearing
aids—Inertialmeasurement unit sensors—Sensorineural hearing loss.

Otol Neurotol 46:121–127, 2025.
INTRODUCTION

Among US seniors, falls are a leading cause of injury
and death (1). Some 27.5% of adults aged 65 years and
older fall each year resulting in 3 million emergency room
visits, 950,000 hospitalizations, and 32,000 deaths (2). The
estimated medical costs alone exceed $50 billion annually
(3). A single fall has been estimated to cost $9,000 to
$30,000 depending on the healthcare setting and severity
of the fall (4,5). Adding to this total are costs stemming
from loss of independence such as in-home caregivers
and assisted-living facilities. Due to the substantial human
toll and financial burden of falls, much effort has gone into
the identification of those at risk for falls, designing preven-
tativemeasures, and implementing therapeutic interventions.
As environmental and rehabilitative measures can substan-
tially reduce fall risk, early identification of those at height-
ened risk for falls is a foremost priority. Indeed, in a cross-
sectional study of patients at risk of falling due to dizziness,
thosewho completed physical therapy were associated with
an 86% reduction in risk of falls (6).
authorized reproduction of this article is prohibited.
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Numerous methods have been proposed for identifying
those at risk for falls (7). A variety of fall risk assessment
screening tools have been proposed encompassing patient
(eg, orthopedic, neurological, and vision) and environmen-
tal factors that contribute to fall risk. The 1-year risk of fall-
ing doubles for every added risk factor: 8% for zero risk
factors, 19% for two risk factors, 32% for three risk factors,
and 78% for four risk factors (8). The most significant pre-
dictor of falling is a previous fall episode; thus, priority
should be placed on preventing the initial fall (9). As fall
victims have typically experienced a pattern of near falls
before injury, measurement of a patient's mobility pattern
during activities of daily life is the most direct means of
assessing risk. This has led to the exploration of wearable
devices, including inertial measurement units (IMUs) with
one or more accelerometer and/or gyroscopic sensors
affixed to the body to identify movement patterns indica-
tive of heightened fall risk (10–14). Because statistical
and threshold-based analyses lead to high levels of false
alarms, machine learning (ML) and artificial intelligence
(AI) algorithms have been used to refine the interpretation
of sensor data (15,16).
Conceptually, a pair of ear-worn devices working in tan-

dem has advantages over inertial sensors positioned else-
where on the body. Compared with sensors placed on the
wrist or leg, ear-worn sensors are subject to fewer extrane-
ous movements. Also, ear-worn devices such as hearing
aids offer multiple benefits, including hearing rehabilita-
tion and being a conduit for information and entertainment
(music, books, audio, web access, etc), and are a favorable
site for monitoring biometrics reflective of brain function
(17–19). In addition, because increasing hearing loss is as-
sociated with a greater risk of falling (20), coupling a fall
detection device with a hearing aid may be especially ben-
eficial. Recent reports have suggested that hearing aid use
is associated with a reduced risk of falling (21,22).
Recently, Starkey Hearing Technologies developed an

enhanced hearing aid embedded with inertial measurement
units and powered by artificial intelligence to automatically
detect falls as well as measure and decipher different gait,
strength, and mobility parameters. Preliminary testing of a
binaural pair of devices in a small cohort of healthy young
adults who simulated falls and near falls showed good accu-
racy with few false positives during activities of daily living
(23). In another preliminary study, the device was shown to
bemore accurate in measuring step counts than pedometers
or wrist-worn monitors (24). Prior to assessing this novel
ear sensor for continuous monitoring of activities of daily
living for signs of heightened risk of falling among a large
cohort of seniors, we undertook the present study as a
means of validating the accuracy and reliability of the de-
vices based on national guidelines for fall risk assessment.
The Center for Disease Control and Prevention (CDC)

has developed a multidimensional fall risk algorithm called
Stopping Elderly Accidents, Deaths, and Injuries (STEADI),
which was based on the American Geriatrics Society (AGS)
and British Geriatrics Society (BGS) guidelines for fall pre-
vention (25). The CDCSTEADI protocol utilizes amultifac-
torial approach to assess fall risk using validated tools such
Otology & Neurotology, Vol. 46, No. 2, 2025
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as two fall risk questionnaires and three assessments of
functional mobility including the 4-Stage Balance test to
evaluate balance, 30-Second Chair Stand Test to evaluate
strength, and the Timed Up and Go (TUG) test to evaluate
gait. Several studies have shown the STEADI algorithm to
be reasonably predictive of future falls (26,27), and a sys-
tematic review has shown that individual fall risk assess-
ments can reduce the rate of falls by 24% (28). However,
fall risk evaluation and management implementation in
clinics has significant, variegated barriers limiting the prac-
tical use of fall risk guidelines, including the perception of
increased time to perform guidelines, limited resources,
and failure to identify needs (29,30). Improving guidelines
accessibility through self-administration would effectively
reduce several barriers to fall risk detection and therefore
a fall risk plan of care. Fall risk plans of care can reduce
falls by 40%, highlighting the great impact effective fall
risk assessments can have on patients' morbidity, mortality,
quality of life, and overall healthcare burden given the high
cost of falls (31).

The goal of the present study is to compare STEADI al-
gorithm results collected by trained observers to the results
computed by IMU-HAs in a large cohort of people over the
age of 55 who screened positive for increased fall risks
using the STEADI algorithm questionnaires.

Study Design
All datawere collected by Stanford University researchers

at university and community locations. All participants were
provided written informed consent; the study protocol was
approved by the Research Ethics Board of Stanford Univer-
sity (IRB Protocol Number 60900). Participants for this
study were recruited primarily from electronic and printed
flyers. These were posted in the Audiology clinic at the
Stanford Ear Institute and within the local community in lo-
cations such as an assisted living community. Participants
meeting inclusion criteria completed a demographics survey,
completed a hearing assessment, were fitted with the IMU-
hearing aids, and then instructed on how to complete the
CDC STEADI functional mobility assessments while wear-
ing the IMU-HAs. Assessments were scored in real time by a
trained observer. Trained observers were defined as having
formal training in CDC STEADI assessments. Assessments
were video recorded and scored by two remote, trained ob-
servers at a later date to give three scores for each mobility
assessment. Statistical analysis was then performed.

Inclusion Criteria
Inclusion criteria for participants required the following:

age 55 or older, English speaking, and screened positive for
fall risk. This was determined by CDC-recommended indi-
vidual self-report to one or more “3 Key Questions”: 1) Fell
in the past year? 2) Feel unsteady when standing or walk-
ing? and 3)Worries about falling? Two hundred fifty partic-
ipants were recruited in this manner, with ages ranging
from 55 to 100 years (mean age = 78.3 years, standard de-
viation = 9.6 years, median = 78.6 years, interquartile
range = 71.6–84.5 years) and fall history recorded (58% re-
ported falls in the past year, among whom the average
zed reproduction of this article is prohibited.
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number of falls was 2.2 falls; standard deviation = 1.7).
Other demographics information is listed in Table 1.

Study Protocol
All participants first underwent hearing tests using tradi-

tional audiological procedures. Pure-tone thresholds were
obtained using the Hughson-Westlake procedure (32) for
sound frequencies ranging from 250 to 8000 Hz. The par-
ticipants were then fitted with bilateral IMU-HAs accord-
ing to the NAL-NL2 fitting formula (33). The IMU-HAs
were equipped with embedded IMUs and AI algorithms
to track participant movements and physical activity. The
IMU data were streamed to a smartphone application via
Bluetooth Low Energy (BLE) link, which was paired to
the HAs worn by the participant. The combination of the
IMU-HAs and the smartphone application are defined here
as the HA application.
Motion tracking and analysis algorithms (MTAA) were

developed using artificial intelligence based on machine
learning methods for the IMU-HA application to automat-
ically detect and score performance on the STEADI test.
The MTAA were trained using IMU data recorded from
the hearing aids in lab studies. The development included
augmentations of the recorded IMU signals with various
noise signals to ensure the algorithms are robust to
interdevice variability and natural differences in head pos-
ture or device orientation. The MTAA includes IMU signal
sampling, initial processing, and head posture correction,
performed in real-time on the IMU-HAs. This output is
then sent via the Bluetooth link to the mobile phone, where
real-time STEADI test scoring is performed using the
MTAA output.
Following the fitting of the HAs, all participants com-

pleted the CDC STEADI functional mobility assessments
focusing on gait, balance, and strength assessment (25).
This encompasses three key assessments: the 4-Stage Balance
test, the 30-Second Chair Stand test, and the Timed Up and
Go (TUG) test. During testing, and to ensure patient safety,
TABLE 1. Demographics

Percentage

Biological sex at birth
Female 62.4
Male 37.6

Education level
High school 10.4
College 44
Postgraduate 32.4
Professional 13.2

Ethnicity
American Indian/Alaska Native 0.4
Asian/Pacific Islander 12.4
Hispanic/Latino 2.8
White 81.6
Other 2.8

Presence of hearing loss
Yes 94
No 6

Presence of hearing loss was defined has having at least one frequency
greater than 25 dB HL at 500, 1000, 2000, or 4000 Hz.

Copyright © 2025 Otology & Neurotology, Inc. Un
the Starkey AI-based Fall Detection Algorithms and Fall
Alert feature were also enabled on the IMU-HAs. These as-
sessments are described below.

4-Stage Balance Test
In the 4-Stage Balance test, the participants performed a

sequence of four distinct balance positions. Each position
progressively increased in complexity. The first position
was the side-by-side position. The second position was
the instep position. The third position was the tandem posi-
tion. The final position was the one-foot stance position.
Participants were asked to hold each position for a duration
of 10 seconds. The performance at each position was then
evaluated on a pass-fail basis; participants were required
to maintain balance for the full 10-second duration to pass
the test. If a participant touched an external feature, such as
a wall or chair, or repositioned their foot to a better position
during any of the stances, a failure was recorded. To estab-
lish an overall pass, participants were required to success-
fully complete a minimum of three of the four stances.

Timed Up and Go Test
In the TUG test, participants began by sitting in a chair

measuring 17 in height or 43.2 cm, not touching a wall.
They were then required to stand up, walk a 10-ft distance,
perform a 180-degree turn, and subsequently return the
same 10-ft path to their initial seated position (34). Success-
ful completion of the TUG test necessitated participants to
execute this sequence within a timeframe of under 12 sec-
onds based on CDC recommendations within the STEADI
protocol. Participants were allowed to use assistive devices,
including canes and walkers, during the test. Participants
were allowed a demonstration and test trial if needed.

30-Second Chair Stand
In the 30-Second Chair Stand Test (CS), participants re-

peatedly transitioned from a seated to a standing position
and back, without utilizing their arms for support, for a du-
ration of 30 seconds. The chair used for this test was 17 in
in height (43.2 cm). Participants were scored based on the
number of full standing transitions achieved by each participant
within the allotted 30-second timeframe. In cases where a par-
ticipant was in the process of standing when the 30-second
mark was reached, it was counted as a successful stand if they
were over halfway standing. The pass-fail criteria for this test
were adjusted to account for age and sex according to CDC
STEADI guidelines.

Scoring and Rating
Each test in the STEADImobility assessment was scored

in two ways. First, the performance of each participant was
scored and rated by three trained observers. All trials were
video recorded. Second, the performance of each partici-
pant was scored and rated by the IMU-HA application.

Statistical Analysis
Our first analysis was to ensure reliability across the

three raters; we did so using an intraclass correlation coef-
ficient (ICC[35]). In this measure, ICC values greater than
Otology & Neurotology, Vol. 46, No. 2, 2025

authorized reproduction of this article is prohibited.



TABLE 2. Agreement ratings between trained observer and
IMU-HA application for different foot placements during the

4-Stage Balance test

4-Stage Balance Test

Direction Foot Placement Agreement

Side: Stand with your feet side-by-side. 94.8%

Instep: place the instep of one foot so it
is touching the big toe of the other foot.

93.1%

Tandem: place one foot in front of the other,
heel touching toe.

82.6%

One foot: stand on one foot—whichever
foot you prefer.

79.4%

This table delineates the specific foot placement challenges presented
during each stage of the 4-Stage Balance test, accompanied by directional
images. The agreement percentages reflect the consistency between ratings
given by the trained observers and the IMU-HA application for each re-
spective stage.
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or equal to 0.9 are associated with excellent reliability.
Comparisons between the trained raters and the IMU-HA
application were performed using linear regression to ex-
amine the relationship between these measures, and paired
t tests were used to compare the mean values. Individual
raters' comparisons are included in supplemental materials.
Finally, sensitivity and specificity values were obtained to
compare the pass-fail rates between the trained raters and
the HA application. Ground truth sensitivity and specificity
FIG. 1. TUG test. The left panel displays a linear regression plot of the rel
and those by the IMU-HA application (x axis) on the TUG test. The regressio
equivalent performance for the observers and the IMU-HA application. Th
measured by the observer for a given participant, while symbols below t
boxplots of the TUG results for the trained observers (left) and the IMU-HA
range, with the error bars indicating the entire range. Across both panels, in
indicating overlapping data points.

Otology & Neurotology, Vol. 46, No. 2, 2025

Copyright © 2025 Otology & Neurotology, Inc. Unauthori
were scored by the trained observers. In cases where data
were missing due to participant or application error, a mixed
effect model was used to address unbalanced data.

RESULTS

Rater Agreement
Our data indicate that the in-person rater and the two

offline raters demonstrated excellent agreement in their ratings
for participant performance on each subtest. Here, we ob-
served ICC values of 0.903 (95% CI 0.881–0.922), 0.978
(0.973, 0.982), and 0.994 (0.992, 0.995) on the 4-Stage Bal-
ance test, 30-second chair stand, and TUG test, respectively.
Because of the high ICC values, we averaged the ratings of
the in-person and two offline raters to obtain a single “trained
observer” rating (see also [36]) for a similar application. That
“trained observer” ratingwas used for all subsequent analyses.
Individual ratings were scored and analyzed and are provided
in Supplementary Table 1, http://links.lww.com/MAO/C7.

4-Stage Balance Test
Across all stages of the 4-Stage Balance test, we observed

good agreement between the trained observer rating and
IMU-HA application. The results are presented in Table 2.
Here, the agreement ranged from 82.6% (tandem subtest) to
94.8% (side-by-side subtest) across different stages. On the
one-foot subtest, which is not required to pass the 4-Stage
Balance test (25), the agreement was 79.4%

Timed Up and Go (TUG) Test
In the TUG test, we observed excellent agreement be-

tween the trained observer rating and the IMU-HA applica-
tion when the IMU-HA application successfully recorded
the output of this test. The HA application was unable to re-
cord a response in 12% of the participants (n = 30/250 total
participants). However, when the IMU-HA application suc-
cessfully recorded a response, we observed a very close cor-
respondence between the time recorded by trained observers
and the IMU-HA application (R2220 = 0.96; p < 0.001; Fig. 1,
ationship between timings recorded by the trained observers (y axis)
n line is depicted by the solid red line; the dashed black line indicates
us, symbols above the dashed line indicate longer TUG times when
he dashed line indicate shorter TUG times. The right panel shows
application (right). The edge of the box represents the interquartile

dividual data points are represented by triangles with darker shades,

zed reproduction of this article is prohibited.
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 on 01/20/2025
left panel). Moreover, the average durations recorded by the
trained observers and the IMU-HA application did not differ
significantly (t220 = 0.94, p = 0.35; Fig. 1, right panel).
Further analysis of the pass/fail outcomes for individual

participants showed excellent agreement between the trained
observer rating and the IMU-HA application. Using the
trained observer rating as the “gold standard,” the IMU-HA
application demonstrated a sensitivity of 98.6% for identify-
ing “Pass” ratings. The specificity of the IMU-HA applica-
tion, as determined by its ability to identify “Fail” ratings,
was 92.3%. Taken together, these data show excellent agree-
ment between the trained observer rating and the IMU-HA
application when the application successfully recorded the
TUG test output.

30-Second Chair Stand Test
While we observed good agreement between the number

of stands counted by the trained observers and the IMU-HA
application, there was a small but significant difference be-
tween the two. Here, the linear regression analysis indicated
a strong relationship between the stand counts recorded by
the trained observers and the IMU-HA application
(R2249 = 0.93; p < 0.001; Fig. 2, left panel). However, despite
the strong correlation, a small but statistically significant
difference was observed between the two groups as the
trained observers reported a stand count that was 0.8 units
higher than the count produced by the IMU-HA application
(t249 = 10.13, p < 0.001; Fig. 2, right panel).
For the comparative analysis of pass/fail ratings between

the in-person observer and the IMU-HA application, the
criteria were normalized for age and sex. The analysis re-
vealed an accuracy of 89% in the classifications made by
the IMU-HA application compared to the in-person ob-
server rating. The specificity of the IMU-HA application
exhibited perfect precision, indicating that when a “pass”
classification was made by the IMU-HA application, it
was always in agreement with the in-person observer's clas-
sification. However, the sensitivity was 78%, highlighting
that the HA sometimes classified participants as “fail”
when the trained observers classified them as “pass.” Of
FIG. 2. Thirty-second chair stand test. The left panel displays a linear reg
recorded by the trained observers (y axis) and the IMU-HA application (x a
black line indicates equivalent performance for the observers and the IMU
chair stands recorded by the trained observer for a given participant, while
by the trained observer. The right panel shows boxplots of the chair stand t
(right). The edge of the box represents the interquartile range, with the erro
points are represented by triangles with darker shades, indicating overlap

Copyright © 2025 Otology & Neurotology, Inc. Un
the participants who met the passing criteria from the in-
person observer, 11% (n = 21/200) were misclassified by
the IMU-HA application. The specificity was 100%, mean-
ing that all the “fail” classifications by the in-person ob-
server were also identified as “fail” by the HA. This high
specificity, combined with perfect precision, underscores
the reliability of the HA application in identifying individ-
uals who did not pass the test.

Safety
No falls were detected by the Fall Alert feature of the

IMU-HA, and no falls or harm of any sort was reported
by the patients or observers while completing the study.

DISCUSSION

On the whole, we observed good agreement between an
IMU-HA application and trained observers when evaluating
fall risk according to the STEADI protocol. For example,
with the three subscales required to assess fall risk on the
4-Stage Balance test, the agreement ranged from 82.6%
(tandem subtest) to 94.8% (side-by-side subtest). Thus, we
observed good agreement on the whole between the trained
observer and the IMU-HA application on this measure.
Agreement was lower on the one-foot subtest (79.4%); note
that this subtest is considered more difficult and is not re-
quired to pass the 4-Stage Balance test (25). In those cases
in which we failed to observe agreement, one possible ex-
planation is that near falls with recovery were interpreted
as a fall by the IMU-HA application. This observation was
previously reported in an HA application that reported a
false-positive result when a participant experienced a loss
of balance followed by a recovery (23). In contrast, such
near falls would not qualify as a loss of balance by clinician
criteria and may account for the discrepancies observed
here. Notably, near falls are a significant predictor of future
fall risk (37). To the extent that near falls contribute to the
discrepancies observed here, they raise the possibility that
IMU-HA applications may aid in the identification of future
fall risk when performing the STEADI protocol.
ression plot of the relationship between the number of chair stands
xis). The regression line is depicted by the solid red line; the dashed
-HA application. Thus, symbols above the dashed line indicate more
symbols below the dashed line indicate fewer chair stands recorded
est results for the trained observers (left) and the IMU-HA application
r bars indicating the entire range. Across both panels, individual data
ping data points.

Otology & Neurotology, Vol. 46, No. 2, 2025
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In the TUG test, the IMU-HA score correlated strongly
with the trained observer score when the application was
able to compute a response, with no difference in the dura-
tion between the two groups. However, the HA application
failed to record a response in 12% of the participants. As
participants, not trained observers, were charged with con-
trolling the app, we speculate that the most likely explana-
tion for this is that some participants had difficulty manip-
ulating the app (eg, starting the app when beginning the
TUG). By this logic, participants either need to be better
trained to use the app or the application needs to be im-
proved to reduce the likelihood of this occurrence. This is
particularly relevant given that failure on the TUG test is
likely the most predictive of falls and is the only mobility
assessment recommended by both the CDC and the World
Guidelines for Falls Prevention and Management for Older
Adults: A Global Initiative (38).
In the 30-Second Chair Stand test, there was a close rela-

tionship between the number of stands counted by the HA
application and trained observer rating. While the relation-
ship between the two was virtually linear, we observed that
the IMU-HA application underestimated patient perfor-
mance on this measure by approximately 0.8 counts relative
to the trained observer rating. While this average difference
was small, of the participants tested here, 11% would be at
risk of pass/fail misclassification from a miscount of one
stand. One likely explanation for this small but relevant dis-
crepancy is the difference between the HA application and
the trained observers in those cases in which the patient is
over halfway to a standing position at the end of the 30-
second period. In the STEADI protocol, if a participant is
over halfway to a standing position when 30 seconds has
lapsed, observers are instructed to count it as a stand. In
contrast, it is possible that the HA application did not al-
ways count the last partial stand in the full-stand count.
An alternative possibility is that the HA application may
have caused difficulty in interpreting additional movements
associated with standing, such as with individuals who
struggle to stand without utilizing their arms, as they may
thrust their bodies forward to gain momentum (39). Simi-
larly, some individuals may have incorporated more head
movement as they began to experience fatigue, leading
to incomplete ratings by the HA application. Thus, while
the IMU-HA application is promising, additional im-
provements may be needed to eliminate the potential for
miscategorization of fall risk.
This study has several limitations, including generaliz-

ability of data and IMU-HA application data collection er-
rors. These data were collected in a controlled environment
with trained observers readily accessible to study partici-
pants to demonstrate, correct, and troubleshoot while learn-
ing the STEADI assessments and how to use the HA. The
translation of these results in real-world settings without
real-time technological support or assessment demonstra-
tions will require more user experience research to under-
stand if similar outcomes are possible in more real-world
settings. In addition, the study population may not be repre-
sentative of a more general population: most of the study
participants were highly educated, of high socioeconomic
Otology & Neurotology, Vol. 46, No. 2, 2025
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background, and technologically advanced. Thus, further
research will be needed to understand how user experience,
demographic data, and environment will affect outcomes.

In closing, the agreement between the IMU-HA applica-
tion and trained observers is encouraging for several use
cases. For example, the HAmay enable remote assessments
of fall risk for patients unable to attend in-person appoint-
ments, or who live in low-resource settings. Moreover, as
hearing loss is more readily recognized as an independent
risk factor for fall risk, HA fittings could allow for another
touchpoint in the healthcare system to educate patients on
their individual increased risk for falls, or equip them with
a fall risk calculator to allow for self-assessment. In this
way, increased self-assessment will not only improve
awareness of general and personal factors contributing to
fall risk, but may also reduce the total number of falls and
healthcare burden by giving patients the agency and access
required to enact a fall risk plan of care while integrating
that care into other aspects of their hearing health.
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